CIFellows 2020-2021

Computing Innovation Fellows

Brianna B. Posadas

Virginia Tech

Socially Responsible AI Assurance in Precision Agriculture for Farmers and Policymakers

Overview

- Currently, there are less than 10 studies of Al assurance in agriculture. Of these studies, few test their systems with agricultural experts; none test their systems with agricultural workers.
- This is significant because as agriculture becomes more automated and technologically advanced, the end users who need to understand the "black box" of Al system are overwhelmingly not ML experts.
- Having this "black box" makes it difficult for agricultural workers to trust AI systems and makes it difficult for policymakers to protect the interests of agricultural stakeholders.
- recommendations for more accessible XAI agricultural systems including utilizing participatory design, designing for different end users, and having programmers be transparent and upfront about data use and privacy.

Background

- As one solution to feeding a growing population with finite resources, some farmers, researchers, and Agricultural Technology Providers (ATPs) have turned to Precision Agriculture (PA).
- PA is the practice of mapping out precise input applications to maximize the yield.
- In order to implement the machine learning algorithms for PA on a larger, industrial scale, Agricultural Technology Providers (ATPs) collect input and output data from farmers to build prescription maps which farmers can program farm equipment to follow.
- To create trusted PA systems, ATPs will need to rely on transparency.
- Addressing the lack of transparency in PA systems will require developing explainable AI (XAI) systems.

Current Methods

Author	System	Test Conditions	End Users	Models/Algorithms	Results
(Rojo et al., 2021)	AHMoSe	choosing ML model to predict grape quality	viticulturalists	knowledge-based fuzzy inference system	viticulutralists us- ing AHMoSe were able to select a model with bet- ter performance than an AutoML system did
(Gandhi et al., 2021)	N/A	simulating crop yield for cotton, wheat, paddy, barley, and maize using tempera- ture, soil mois- ture, humidity, nitrogen, phos- phorous and soil type	not specified	fuzzy-rule based system	the predicted ideal crop conditions and soil types for maximum yield were comparable to conditions provided by the ministry of agriculture and farmers welfare
(Tsakiridis et al., 2020)	Vital	replacing legacy technologies: a set of enviromen- tal sensors in lake Koronia	not specified	fuzzy-rule based system	integration suc- cessful
(Tsakiridis et al., 2020)	Vital	precision irriga- tion for young olive tree orchard	agronomists	fuzzy-rule based system	using Vital with an expert was not as effective at conserving water as using Vital alone
(Tsakiridis et al., 2019)	DECO₃RUM	LUCAS topsoil database	unspecified ex- perts	Mamdani Fuzzy Rule-based Sys- tem	DECO ₃ RUM statistically out- performed global models
(Tsakiridis et al., 2017)	DECO₃RUM	to predict soil properties in sam- ples from Cen- tral Macedonia, Greece	unspecified ex- perts	Mamdani Fuzzy Rule-based Sys- tem	DECO ₃ RUM statistically outperformed the Partial Least Squares Regression algorithm
(Batarseh & Yang, 2017)	Intelligent Fed- eral Data Man- agement Tool, Intelligent Federal Math Engine, and Validation Engine	suite of engines and tools at the US Department of Agriculture to manage, val- idate, calculate and stream data	federal analysts and agricultural researchers	knowledge-based system and data mining methods	57% of analysts gave the system positive feedback

- The study of Al Assurance is a newer development for the agricultural field.
- Overall, the studies were tested by the researchers themselves or unspecified experts.
- However, in agriculture, we need to be cognizant that the end-users of these systems are not only the original researchers, but also the grower or agricultural worker.

Recommendations/Further Work

Rubric for XAI systems

- Does the XAI tool clearly identify its target audience and their expectations for the tool?
- Is the presentation of explanations sufficient for the target audience to gain insight and improve upon their model?
- Does the XAI tool provide a variety of types of explanations?

XAI for Agricultural End Users

- Help users understand Al's capabilities
- Be transparent about data and privacy
- Recognize that many recommendations are high stakes
- Leverage existing trusted resources

Farmer-Centered Al Assurance System

- Common hardware and data constraints
- Build for diverse literacies and multiple languages
- Co-design with smallholder farmers and intermediaries

